
— ——.-

Extended Abstract For
IEEE Multi-Chip Module Conference

MCMC-96

SPACE-CUBE: A FLEXIBLE COMPUTER
ARCHITECTURE BASED ON STACKED

MODULES

July 18, 1995

Gary E3010tin
bolotin@telerobotics. jpl. nasa. gov

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

——...

S~ace-Cube: A Flexible Comrmter Architecture Based 011 Stacked Modules

1. Introduction
Future computing systems need Iow volume, mass, and power electronics.

Through the use of innovative architectural, and microelectronic packaging
design this goal can be achieved. These architectures need to:

1). easily incorporate a variety of different requirements.
2). provide a framework by which data bus protocol and definition,

module package size, interconnection and shape, can be
standardized in order to maintain modularity and architectural
flexibility.

3). create an environment that encourages module inheritance from
mission to mission.

4). be independent of processor type.
5). incorporate new technologies as they become developed.

The Space-Cube Architecture addresses these issues.

1.1 Comparison With State of the Art

Prior to the Space-Cube, multiprocessor and distributed systems were made
up of boards or modules plugged, side by side, in a card cage or frame. The
modules were then connected by means of a single backplane or bus along the
rear surface of the modules. Unfortunately, this single bus strategy creates a
system bottle neck. If multiple busses were required they could be created, but
the lack of an underlying framework for multiple bus construction, resulting in
the possibility of a different design for every application. The Space-Cube
provides this necessary framework.

Backplane interconnections make use of only one surface of the structure.
Multiple bus architectures implemented in a backplane would require either
crossing busses or nonidentical modules. Crossing buses limit the scalability of
a design, while nonidentical modules increase the cost of a. design. Space-
Cube architecture implementations, by making use of all the surfaces of the
modules, are implemented with noncrossing, module to module connections,
and identical module construction. This eliminates the scalability restriction and
reduces cost at the same time.

2. Space-Cube Architecture
The Space-Cube architecture is a flexible, processor independent, computer

architecture based on stacked interchangeable modules. ‘The modules are
regular polygon (i.e. square, hexagon, etc.) in shape. These modules when
stacked on top of each other, are easily configured to a variety of more
complicated architectures. The resulting system is easily expanded and
maintained.

— —

Space-Cube: A Flexible Computer Architecture Based on Stacked Modules— .

2.1 The Module Building Block

The basic building block of this architecture is called a mociule, as illustrated
in figure 1. The module shown is in the shape of a square, and subsequently
can be placed in any of four possible orientations. (N, S, E, W) The
communication between this module and other is done through a high
bandwidth bus, represented by the arrow. A single bus is confined to fit within
one side of a module. A module that interfaces to more then one bus would
have more then one arrow.

Modu

Interconnect
Ring

Figure 1. The basic module

2.1 Interconnect Rings
Interconnections between modules are done by means of interconnect rings,

as shown in figure 2. An interconnect ring is a hollow four sided structure which
can carry up to four buses from module to module. Any side of the interconnect
ring can (not) independently conduct the bus to its neighboring module
depending on whether it is conductive or nonconductive. This is illustrated by a
thick black line or lack there of. These rings, just like the modules, can be
placed in any of four possible orientations. (N, S, [=, W) The interconnect ring is
achieved by using connectors which provide the electrical, thermal, and
mechanical interface between the modules of the system.

nnn
Available Flavors

Figure 2. Interconnect Rings

A module stack is constructed by stacking modules together, Ieggo-style,
with interconnect rings as shown in Figure 3. This results in a physically and
mechanically robust system.

2- ‘—

Space-Cube: A Flexible Computer Architectme Based on Stacked Modules——

MODULE

vInl.rcwn.ci RW

Figure3. Module Stack

A structure of multiple stacks is constructed
form a 3-D structure as shown in Ficwre 4.

by tiling module stacks together to

Figure4. Structure of Multiple Stacks

2.2A Space-Cube Based Computer System

To illustratehow the space-cube architecture can be used to construct a
computer system, we first need to construct several types, “flavors” of modules.
The granularity of the modules is to be chosen based on the problem and
technology at hand. The granularity must be small enough so that there is
sufficient commonality among systems to justify this approach. The granularity
must also be chosen large enough to overcome the overhead of this bus based
architecture.

2.3 Module Flavors

For purposes of this proposal we will discuss four possible module flavors:

1). CPU
2). Memory

3). Gateway

4). 1/0
These modules types

5. Systems can then be
design.

will be discussed in detail and are illustrated in figure
created by linking the desired modules into a stacked

‘2J

Space-Cube: A Flexible Computer Arc!) itecture Based on Stacked Modules— — . .

:BaaQ
Available Flavors and others ● ● ”

Figure5. Module Flavors

The CPU flavor is a self contained processing module. This module
contains a microprocessor along with its local bus and a single interface on to
the Space-Cube bus: Space-bus. The CPU will access the Space-bus when it
is performing a read or write of external data. The remainder of the time the
Space-bus is free to be used by other modules.

CPU MEM
Bus
Interfma SPACE-BUS

5 Internal Bus <

Figure 6. CPU

The memory flavor is a single ported memory unit mapped onto the Space-
Cube bus. This unit represents the mass storage of a Space-Cube stack. The
memory module functions as a slave module and will only respond when
accessed by the current bus master on the Space-bus.

MEM
Bus
Interface SPACE-BUS

J h- Bus <

Figure 7. Memory

The 1/0 flavor is a single ported unit and presents a means of getting data
into and out of Space-Cube stack. The 1/0 module functions as a slave module
and will only respond when accessed. The 1/0 module has two external
connections. The first is the connection to the Space-bus and is represented
by a bus vector. The second connection is from the 1/0 module to the external
enviorment. This connection is represented by an 1/0 vector.

4

Space-Cube: A Flexible Computer Architecture Based on Stacked Modules—— -...

Outdckl
world Uo ‘“*Inkrlam SPACE-BUS

) 1- Bus <

Figure8. 1/0

The gate-way flavor is a four-ported unit
unique to the Space-Cube architecture. The

and is the only module that is
gate-way provides a means of

connecting one bus surface onto any one of the three other surfaces. The gate-
way flavor is illustrated in the following figure. The gate-way shown is a four
ported gate-way and thus requires only two internal busses. For example, if
port A is talking to port D, then the only possible remaining connection is from
port B to port C. If a request were to come in on a port for a pclrt that is occupied
the request will be denied.

sPACE-BUS

SPACE-BUS

SPACE-BUS

SPACE-BUS

Figure 9. The Gate-way

2.4 Examples

Module stacks are constructed by simply stacking modules together with
interconnect rings. This section describes examples of some Space-Cube
systems.

A simple example of a Space-Cube is a simple single processor with its own
memory and 1/0. A single processor is constructed by stacking a CPU module
together with a memory and 1/0 module as shown. Since the three modules are
all stacked in the same direction, the three modules share the same bus.

5- ‘—-

Space-Cube: A Flexible Computer Architectul e Based on Stacked Modules———

DMemory

El’CPU

1/0

I
1/0

Figure 10. A Single Processor

A simple dual processor, with a common shared dual-ported memory can be
constructed by putting the processors, and the shared memory module, at three
unique angles, together with a gate-way. The local bus for each processor is
assigned a unique surface. The shared memory bus is given a third. The gate-
way module which is placed between the processors and the shared memory
completes the stack.

El1/0
[–

—
1/0 1

Figure 11. A Dual Processor With Shared Memory

A multiprocessor can be constructed by stacking four processors in each of
the four directions, together with a gate-way module. The example shown
below is of a seven processor cluster. It is constructed out of seven processor
modules, a memory module, and an eight ported gate-way.

—— -
6

.

Space-Cube: A Flexible Computer Architecture Based on Stacked Modules——

I
L_Y
Figure 12.

MEMORY

Processor Cluster

.—— ——.-
7

Space-Cube: A Flexible Computer Architecture Based on Stacked Modules——

Figure 13 is an architecture which was chosen because it illustrates some of
the key advantages of the Space-Cube. T-he architecture shown, under fault-
free conditions, results in a distributed processing environment with one
processor dedicated to science data processing, and the other to engineering
data processing. However, upon the detection of a fault in either processor, the
surviving processor will assume the responsibilities of the other. Fault tolerance
is made possible because of the cross-strapping between the processors,
memories and 1/0s.

The mass and power of this architecture is comparable to a single string
option yet it can provide similar fault protection cc)mpared to a true dual string
architecture. Only the critical 1/0 hardware is duplicated.

Memory Memory

l_.+

CPU CPU

1

[“

1/0 1/0

4
Eng 1/0 Critical” 1/0 Sci 1/0

Figure 13. Space-Cube Demonstration

This architecture can easily be implemented in a Space-Cube. The
following module flavors are needed:

1). Processor
2). Memory
3). Gateway
4). Fault Detection (this module could be combined with the Gateway

module but is separated for purposes of illustration)
5). 1/0

Figure 13 shows a Space-Cube implementation of this architecture. Each
processor is given a side of the cube for its local bus, and another side for its
shared bus. The sides of the cube are interconnected by means of the Gateway
module. The functionality of the gate-way module will be closely controlled by
the fault detection unit module: FDU. The health of the two processing modules

—— ———
8

.

. Space-Cube: A Flexible Computer Architecture Based on Stacked Modules.-

will be continuously monitor by the FDU. Tklis module upon detection of a faulty
processor will open up the memory and 1/0 functions to the functional
processor.

Eng

Critical

Sci 1/0

1/0

Figure 13. Space-Cube Implementation

4. Conclusion
We propose to deliver a standard mc)dule framework by which data bus

protocol and definition, module package size, interconnection and shape, can
be standardized in order to maintain modularity and architectural flexibility. We
also will demonstrate the architecture using an implementation that illustrates
the key features of the Space-Cube architecture. This implementation will be
constructed, using existing modules as much as possible.

This proposal ties together modules being developed by industry sources,
together with the dense packaging MCM to MCM technology and Die to Die
stacking, and others all under a unifying framework.

—..
9-

Space-Cube: A Flexible Computer Architecture Based o]i Stacked Modules——-.

7. References

[1] Savio Chau, An Optimal Architecture of F’luto Fast F~bL_ Jet Propulsion
Laboratory Internal Document, October 16, 1994.

[2] Leon Alkalaj, The Design and lmp!ementa~o~N4S4s Advanced Flight
Computina Module, IEEE Multichip Module Conference, Santa Cruz, CA,
January 31-February 2, 1995.

[3] Military and Defense Electronics,
For AF, Vol. 5, No, 5 April 1994.

ISC Develops Mix and .Match 3-D Package

9 - ‘—-

+

,

_-. .-— ———.

● *.O ●

_ ——....—.—. —~,—— —. .— --.——— ---

ENGR 1/0

Critical 1/0

Scl 1/0

—

x
(J
Cc
a
Lum
3
0
d
u
a
n
u)

_—– —.. .. —..-. —___ ——— - \

m., .,,,. ‘i .,. n
——.-)

m
Ii

—-.
— --—...-——

